
Abstract-- New data consistency conditions (DCC) have been
derived for parallel projections in two dimensions, which have the
remarkable feature that they can be applied to truncated projec-
tions. We show the derivation of these conditions and illustrate a
potential application to motion detection and compensation.   

I. INTRODUCTION
In the context of image reconstruction, data consistency

conditions (DCC), also called range conditions, are mathemati-
cal descriptions of the redundancies in projection measure-
ments. These conditions can usefully decouple the
tomographic reconstruction problem from other systematic
effects in the measurement model. For example, if the target
specimen (usually a patient in the medical imaging scenario)
undergoes an abrupt rigid motion, the measurement model now
consists of both a very large linear tomographic system as well
as a handful of nonlinear parameters that describe the motion
and the time point when the motion occurred. If DCC are
available for the tomographic model, then the small number of
nonlinear parameters can be estimated by requiring the
adjusted model to satisfy the DCC, which is usually a far easier
task than repeated reconstructions using trial nonlinear param-
eters. This technique has found numerous applications in
various areas of medical imaging, including in x-ray CT (e.g.
[Bas00, Pat02, Def03, Hsi04, Yu07, Maz10, Tan11]).

The most well-known DCC are those of Helgason-Ludwig
(HL) [Lud66, Hel80], which apply to the Radon transform in
parallel projection geometries. Others have been established
for fanbeam, cone-beam, exponential, and attenuated
transforms and for different formats such as for Fourier trans-
formed sinograms. (For example DCC: [Jon38, Nat83, Fin83,
Edh86, Agu95, Pat02, Che05, Yu06, Lev10, ClD13]). Only a
few of these DCC allow subsets of a full tomographic set of
data to be examined for consistency. For example, with the HL
conditions, the order zero condition is that the projection sums
are constant, so any number of projections can be checked for
consistency of their DC terms. Similarly, any two parallel pro-
jections can will determine the degree-1 polynomial specified
in the HL DCC, and other projections can then be checked
against this polynomial. Convenient descriptions of DCC

where subsets of projections can be checked exist in a few
cases, see [ClD13] for an example using cone-beam projec-
tions. This flexibility to apply DCC to subsets of measure-
ments increases their usefulness in applications.

With the advent of true ROI reconstruction in the plane
(see [Cla10] for an overview), it is important to consider the
situation of truncated projections. To our knowledge, no DCC
are known to exist that can treat truncated projections, with the
exception of the differential form given in [Joh30], which has
the both the advantage and disadvantage of applying locally to
fully 3D measurements; they cannot directly be used for just
two truncated cone-beam projections for example.

We announce here what we believe to be the first DCC
that can handle truncated parallel projections in the plane. We
provide a simple proof of the consistency which we illustrate
with simulations. We then discuss how these new DCC might
be applied in practice, using a toy problem (for illustration)
that involves motion detection of a known tumour-like object. 

II. THEORY
We let  represent the unknown density function,

and  be the parallel projection of  defined by

                          (1)

where  and ,  =
. Now, for each non-negative , we consider a

weighted backprojection of , where the weight depends
on . The projection  will be weighted by 
prior to backprojection. The singularity near  will be
dealt with by only considering  as will be
discussed below, but to simplify the derivation we ignore this
detail for now. The weighted backprojection is given by 

              (2)

Since the system is shift-invariant, the behavior of the
weighted backprojection can be completely characterized by
its point response function (PRF), so we first examine this
PRF, and then show how it leads to consistency conditions in
the form of polynomials of degree  which can accommodate
truncation of the projections.

A direct substitution of equation 1 into equation 2,
followed by the substitution  yields

  (3a)
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=              (3b)

=              (3c)

=               (3d)

where the point response function is 

                           (4)

Equation 3c was obtained from equation 3b by performing the
polar-to-rectangular coordinate change of variables  =

, with  = . 
Note that for , the point response function becomes

 and the backprojection  is equal to
an unweighted integration in the -direction of .

We continue the derivation to arrive at our main result. 

     (5a)

=  (5b)

 =                                 (5c)
where we consider  to be held constant and  is given by

    = 

  (6)

The new consistency conditions for 2D parallel projec-
tions can now be stated as follows:
Theorem: Suppose that a sinogram  satisfies
equation 1 for some density function . For  chosen such
that the line  does not intersect the compact support of

, and for any non-negative integer , the weighted back-
projection  (equation 2) evaluated along the line segment

 is a polynomial function of , of degree at
most . That is, 

     (7)
Note that by choosing  such that the line  does

not intersect the support of , all potential singularities vanish.
The expression for  given by equation 6 no longer contains a
singular kernel because the support of  restricts the integra-
tion range to exclude . Furthermore, with the compact
support of  not touching the line , we see that there
must exist some small  such that the projection of the support
of  at any angles  will miss the line
segment , and therefore, for  on the
line segment, this small  range of angles will not contribute to

 given by equation 2, and thus the  singu-
larity is avoided.

According to the theorem, testing the DCC for a parallel
beam system can be achieved by simply performing a weighted
backprojection onto a line segment outside the object, and
verifying that the values on the line segment form a polynomial

of the correct degree. The advantage of these DCC over the HL
or other published conditions is that some projection truncation
is allowed: only those lines which contribute to the backprojec-
tion  for  are needed. In the simulations
section below, we illustrate the large amount of projection
truncation that can be sustained while still being able to check
the DCC of the measurements.

Since the backprojection is only performed along a line
segment rather than a 2D volume, the computational cost is
very low. Furthermore, the number of points along taken along
the line can be chosen to trade off between computational
effort and the accuracy desired to check the polynomial. For
our simulations (see below) we examined only orders

 yet we chose about 100 points on the line
segment. 

For each backprojection of order , a different weight is
required. However, many different backprojections can be
computed in parallel as only the weight depends on . 

III. AN ILLUSTRATION OF DCC
A. Phantom and acquisition geometry

To illustrate the DCC we used a simple phantom made up
of elliptical regions of constant density. Parallel beam projec-
tions of this phantom were obtained by computing exact line-
lengths passing through the component ellipses. The phantom
consists of a large elliptical shell of outer axes lengths 25 units
x 40 units with several smaller elliptical features inside. The
outer component of the elliptical shell is horizontally centered
in the coordinate system but is displaced 10 units in the vertical
direction (so its center is at (0,-10)). The phantom details are
presented in Table 1, and Fig. 1 shows a sketch of it.   

A non-truncated sinogram  was created of this
phantom, for 1600 projections  over the range 
with 2560 samples for . Also, a truncated
sinogram  was considered which was the same as

 by extracting the 1024 central samples for 
 in each projection. This truncated sinogram corre-

sponds to the field-of-view (FOV) of diameter 20 indicated in
Fig. 1. The two sinograms are displayed in Fig 2. Note the
heavy truncation of sinogram : every projection is
truncated either on one side, or the other, or on both sides.      
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Fig 1. Illustration of the phantom, showing also the FOV corresponding to the
truncated sinogram, and also the line-segment along which the backprojections
were calculated for verifying data consistency.
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Table1: Ellipse Parameters
Ellipse Center (Dx, Dy) Density

1a (0, -10) (40, 25) 0.5
1b (0.5, -10) (38, 24) -0.5
2 (-5, -12) (8.75, 8.75) 0.1
3 (2, -7) (3.75, 2.5) 0.1
4 (4, 0) (5, 2.5) 0.1
5 (-7, -1) (1.25, 2.5) 0.1
6 (-3, 0) (1.25, 1.25) 0.1
7 (-4, -4) (2.5 2.5) 0.2
8 (-2, -3.5) (1.5, 1.5) 0.2
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Reconstructions from the two sinograms of Fig. 2 are
shown in Fig. 3. From the full data, a standard filtered back-
projection (FBP) reconstruction was performed. Accurate
(“exact”) ROI reconstruction from such truncated sinograms
was only theoretically established in 2007 [Def07], but no
suitable analytic reconstruction technique is known at this
time. The image of Fig. 3 (right) was achieved by using a con-
jugate gradient method to minimize a least-squares criterion
with a small amount of regularization. This ROI reconstruction
from truncated data is computationally intensive.

B. Verifying data consistency conditions
From the simulated sinogram, the weighted backprojec-

tion functions  defined by equation 2 were calculated
for the line segment  with  = 5 and  as
illustrated in Fig. 1. We now drop the fixed  and just write

 for short. We only examined cases  and the
backprojection was performed for 101 samples along the line
segment, spaced every 0.16 units apart. The plots of Fig. 4
show least-squares fits of the backprojections  to polynomi-
als of degree . We note the excellent polynomial fits of the
correct degree, as predicted by the theory.  

The central observation here is that to perform the back-
projections , only the truncated sinogram was necessary.
All lines (sinogram entries) necessary to calculate the back-
projection were available because the line-segment lies inside
the FOV of Fig. 1. Thus we have found (and numerically
verified) necessary DCC for the truncated sinogram .

IV. AN APPLICATION OF DCC
As an illustration of potential applications of truncated

projection DCC, we consider a dynamic version of our
phantom and illustrate how the DCC can be applied to search
for 3 motion parameters. 

A. Dynamic phantom 
We define a dynamic version of the phantom which

changes during the course of the scan and therefore the projec-
tions will not be consistent. The dynamic nature of the
phantom is described by 3 nonlinear parameters, and the
objective is to search for these parameters by minimizing
inconsistency. For the dynamic phantom, ellipses 7 and 8
undergo a horizontal oscillatory motion (such as a tumour
moving due to respiration). It is assumed that the shape and
density of the “tumour” are known, but not the three motion
parameters  defined below, and not the rest of the
phantom. 

We assume that the projections are gathered over 
seconds uniformly, so . The centers of
ellipses 7 and 8 are now  and  where 

(8)

For our simulation we use  seconds and
 = (2, 17, 7). Fig. 5 illustrates the motion.

Fig 2. Sinograms. Left: the full 1600 projections (vertical axis) of 2560 elements
each for large coverage of 50 units in diameter. The red lines show the boundary
of the FOV indicated in Fig. 1. Right: the 1600 x 1024 truncated sinogram ex-
tracted from full sinogram, covering the 20 units diameter FOV shown in Fig 1. 

r r

 

Fig 3. Reconstructions. Left: a FBP reconstruction of the full object from the full
sinogram of Fig. 2. The reconstruction size was 1024 x 1024.  Right: a conjugate
gradient reconstruction from a downsampled 800 x 512 version of the truncated
sinogram. The image size is 256 x 256. (Greyscale windows are not the same.)
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Fig 4. Data Consistency Conditions. The backprojections , , 
were fit respectively to polynomials of degree 0, 1, 2. The three graphs show the
original 101 values  along the line  and, superimposed, the best fit
polynomial. The residual values are also listed.
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B. Sinogram and reconstruction of dynamic data     
As before, the (truncated) projections were simulated by

using line-length calculations, but through the dynamic
phantom described above. Fig. 6 shows the resulting sinogram
and the reconstruction obtained from this sinogram. It is an
interesting curiosity that the movement of disks 7 and 8 does
not cause only a lateral blurring, but seems to suggest a
triangular motion. 

C. Using DCC to identify the motion
We describe here our procedure for using DCC to estimate

the three motion parameters of the tumour from the projections
 of the dynamic phantom. We introduce non-negative cost

functions  which are zero when the (truncated) sinogram
is consistent. Recalling that  is the backprojection of 
along the line segment, we define  to be the residual of
the best degree-  polynomial fit to . That is,

                        (9)

where  is the set of all polynomials of degree . 
Since we know the tumour properties, from a set of motion

parameters  we can simulate its position at time 
and thereby construct a simulated tumour sinogram . If
we successfully estimate its motion parameters, they can be
subtracted from the measurements  to give consistent
data. So, we define a cost function  as follows:

         (10)

We used the Downhill Simplex method (see “amoeba”
[Pre03]) to minimize  starting from four vertices of
an initial simplex of  = (1.5, 16, 6), (3, 16, 6),
(1.5, 17.5, 6), (1.5, 16, 7.5) with respective costs 0.27, 0.88,
0.31, 0.63. We obtained, after 204 evaluations of the cost
function, the values  = (1.98, 16.99, 7.03) with a cost
of 0.19 (which was slightly lower than the cost at the “true”
motion parameters  = (2, 17, 7)). 

In Fig. 7 we show the sinogram  of the estimated
movement of the tumour, which we subtract from the measured
sinogram  to give a corrected sinogram 
which is the most consistent possible according to our
procedure. We performed a motion-corrected reconstruction
from this consistent sinogram, and in comparing with Fig. 6 we
note that the motion artifacts have been virtually eliminated.

V. DISCUSSION AND CONCLUSIONS
We have derived necessary DCC for truncated parallel

projections. We believe these to be the first published DCC for
truncated projections. The conditions were applied to a toy
problem in motion estimation and compensation to illustrate
their potential for practical applications. 

DCC for truncated fanbeam projections are possible using
the same principles as shown here, but the backprojection step
would be more elaborate, probably requiring 2D interpolations. 

The backprojection weight functions are closely related to
expressions appearing in recently-published fanbeam DCC
[Cla13]. The link can be seen by considering the virtual
fanbeam approach (see [Cla10] for a description) applied to the
truncated parallel projections. 
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parameters as in Fig 3(right). Note that complicated blurring caused by motion.
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