
Abstract-- Full (necessary and sufficient) consistency condi-
tions are presented for cone-beam projections with sources on a
plane. The object support is assumed to lie entirely on one side of
the source plane. We have also established full consistency condi-
tions for planograms and linograms, in both parallel and diver-
gent beam formats. We show that moments of the appropriately
weighted cone-beam projections form polynomials in the source
variables, similar to the Helgason-Ludwig conditions. The degree
of the polynomial matches the degree of the moment. All the con-
sistency conditions stated here appear to be new. A simulation
example is presented for the circular tomosynthesis geometry.   

I. INTRODUCTION
In image reconstruction from projections, consistency

conditions (also known as range conditions) are mathematical
expressions that describe the crosstalk of information between
measured projections. Consistency conditions have been
widely used in reconstruction algorithms for a range of medical
imaging applications, with dozens of publications over the past
20 years in SPECT (e.g. [Nat93a] [Gli94] [Men99] [Erl00]), in
PET (e.g. [Def95] [Wel03] [Lay05] [Def12]), and in X-ray CT
(e.g. [Bas00] [Pat02] [Hsi04] [Yu07] [Tan11]). A typical ap-
proach is to use consistency to identify the parameters of some
systematic effect in the imaging model such as rigid motion
parameters, a photon attenuation coefficient, a beam hardening
scaling factor, an elliptical body outline, amongst various pos-
sibilities. So for many applications, a collection of necessary
conditions on the projections are needed in some convenient
format for processing. 

Consistency conditions for parallel projections in two
dimensions are well known and take different forms such as
the Helgason-Ludwig (HL) conditions [Lud66] [Hel80] or the
frequency-distance relation on the Fourier transform of a sino-
gram [Edh86]. For applications in SPECT, conditions for the
exponential ray transform (also called the exponential X-ray
transform) are known [Agu95], and necessary conditions are
also known for the two-dimensional (2D) attenuated Radon
transform [Nat83]. 

For cone-beam or fanbeam projections, much less is
known. Of the various publications on range conditions for

divergent projections (e.g. [Fin83a] [Fin83b] [Pat02] [Che05]
[Yu06] [Lev10] [Cla13]) most (not all) of them are just the par-
allel conditions re-expressed using fanbeam or cone-beam
variables. This approach presents the disadvantage that a com-
plete set of projections must be available so that the underlying
parallel geometry is completely sampled. Some of the other
formulations, not related to the parallel case also require a
complete set of projections [Lou89] [Nat93b] [Maz10]. For
applications, it is useful to have a method of processing a small
finite set of projections, so the conditions should be amenable
to this preference. A discussion of this point can be found in
[Cla13].

In this work we are considering cone-beam projections,
and we restrict our attention to planar source trajectories with
the object support being entirely on one side of the trajectory
plane. Currently, consistency conditions for this geometry can
be obtained by applying John’s condition (see [Fin85] [Pat02])
which is a partial differential equation with the disadvantage
that it only treats local information in the projections; or by
considering restrictions of the cone-beam geometry to fanbeam
cases [Lev10]; or by using Grangeat’s result [Gra91] which
also only uses lines of data on the cone-beam projections. The
conditions described below treat full cone-beam projections
and have the added appeal of being in the familiar form of
moments of the projections, similar to the HL conditions for
parallel projections. We also indicate that the consistency con-
ditions can easily be converted to planogram coordinates
[Bra04] and we give full (necessary and sufficient) consistency
conditions for planogram projections in both cone-beam and
parallel formats. Similar results for linograms [Edh87] are
readily extracted from the existing literature and will be stated
below too. 

II. THEORY

A. Cone-beam consistency for a planar source trajectory
Let the source trajectory be  and without loss of gen-

erality, define the coordinate system so that the trajectory plane
is  and the object lies in the  half-space. The  and

 axes can be chosen freely in the  plane. The unit
vector  is selected using conventional  coordinates, so

 = ( , , ). The cone-beam projec-
tion  is given by

                          (1)

For cone-beam consistency conditions, we first define
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(2)
for each . The cone-beam projections  will
then satisfy 

                (3)
for all  in the plane, where for each ,  is a
homogeneous polynomial of degree . 

These conditions are easily established. Simply substitut-
ing equation 1 into the expression for  given by equation 2,
and changing from spherical to cartesian coordinates 
= , with , and recalling that

, we quickly obtain

=                           (4)
where  = , and 

        (5)

so  is a homogeneous polynomial of degree  as claimed.
These consistency conditions are full because the converse

is also true. Given some projection function , which satisfies
equation 3 for each non-negative integer  and each  in the
plane, and where  is a homogeneous polynomial of degree

, there exists some function  such that equation 1 is satis-
fied. Our proof of this fact appeals to several existing theorems
in image reconstruction theory and is too long to be presented
in this abstract. To the best of our knowledge, these conditions
are new. 

For a flat detector parallel to the trajectory plane, these
consistency conditions can be written in simpler form as will
be shown below.

B. Full consistency conditions for planograms
Planogram coordinates [Bra04] are a three-dimensional

(3D) version of linogram coordinates [Edh85]. As shown in
fig. 1, planogram coordinates are suitable for a (conceptual)
PET system consisting of two parallel infinite flat detectors.
An integration line is specified by absolute coordinates on one

detector and relative coordinates on the second detector. For
convenience it is assumed that the distance between the detec-
tors is one (which is not restrictive because simply scaling the
units will accomplish this). We will assume that the first detec-
tor is in the  plane and the second detector in the 
plane. With an object  of compact support situated between
the detectors we define the planogram by

              (6)

Equation 6 is written  for short. The reason for the
“hat” is to emphasize that the planograms are in cone-beam
format. See fig. 1(a). For each source location  on the
first detector, the cone-beam projection  is given by
equation 6. A parallel projection version is defined below.

Equations 1 and 6 are linked by associating  = ,
and . It is then straight-
forward to verify that 

                    (7)
and the cone-beam consistency conditions can be readily con-
verted to full planogram consistency conditions which have a
much simpler form:

P1: Let . Then
 for some  if and only if for all 

                 (8)
where  is a homogenous polynomial of degree . 

Turning now to planograms in parallel format, the vari-
ables  are the projection indices, indicating the direction
of the projection, and the individual ray variables are now

 (see fig. 1(b)). The idea is that a parallel projection
 with direction  is measured on the first

detector. We write  for the equation

          (9)
so . However, it is important to
recognize that these are fundamentally different when consid-
ered as functions of their projection indices (the first 2 vari-
ables). Now theorem 4.3 in [Nat86] provides full consistency
for parallel projections in three-dimensions, and a simple
change of variables provides the following result:

P2: Let . Then
 for some  if and only if for all 

              (10)
where  is a homogenous polynomial of degree .

The remarkable symmetry of the two results P1 and P2
belies their mathematical equivalence. We found that proving
one from the other is not direct, and required the machinery of
[Edh96]. Even for the same f, the polynomials  and  are
not the same in general. 

C. Full consistency conditions for linograms
We present the corresponding linogram results, which are
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Fig 1. Planograms. (a) Cone-beam planograms. The source point (x, y) specifies
the projection. The rays within a projection are specified by direction (u, v).
(b) Parallel projection planograms. The direction of the projection is (u, v). The
projection rays are specified by their intersection point with the detector (x, y).
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the 2D versions of P1 and P2 above. Conceptually the two
detector lines are vertical, separated by a distance of one, and
the object lies between them.

 For linograms in fanbeam format, we define  by

                  (11)
and an elementary substitution of variables applied to
theorem 1 in [Cla13] immediately gives us

L1: Let . Then  for some  if
and only if for each , the function  is a poly-
nomial of degree . (I.e. .)

For linograms in parallel format, we define  by

                 (12)
and we note the misleadingly simple . From
the well-known 2D HL conditions, full consistency for parallel
linograms are easily derived and are given by

L2: Let . then  for some  if
and only if for each , the function  is a poly-
nomial of degree . (I.e. .)

The symmetry in the definitions and the stated results
suggest a much more trivial mathematical equivalence than
actually exists between the fanbeam and parallel linograms. 

III SIMULATIONS

A. Circular tomosynthesis geometry
Because recent advances have made progress with

straight-line source trajectories in cone-beam tomography
[Lev10] [Cla13], we chose to simulate a circular trajectory.
This scanning configuration was probably first known as circu-
lar tomosynthesis. Figure 2 illustrates the geometry and an
example projection of a high-contrast version of the 3D Shepp-
Logan phantom. The projections were simulated using analytic
line-length computations on the component ellipsoids. The
detector was fixed (did not move with or conjugate to the
source), and had 1024 x 1024 pixels. Thirty six projections
were taken at 10o increments along the source trajectory; this
was enough projections to validate the theory and demonstrate
the concepts. The cone-angle was a substantial 20o (41o full-

angle) to ensure a strong cone-beam effect and avoid being
perceived as ‘nearly parallel.’

B. Full consistency for fixed detector systems
The cone-beam measurements are given by  as

specified in equation 1. We immediately scale and weight the
projections so that the detector distance is one, and 
=  with the variables linked as follows: 
=  and  = . The “hat” on the  is a
reminder both that the detector is fixed, and more importantly,
that the raw projection measurements have been multiplied by

, which is the cosine of the angle of incidence of the ray
(  is the angle between the detector normal and the incoming
ray). This  term often appears in reconstruction algo-
rithms for cone-beam tomography. To compress the notation
slightly, we now use  instead of . It is easily
shown that 

     (13)
which is similar to the definition of  from equation 9. 

Full consistency conditions for  can be written
in the same form as for the planograms case. Defining

 = , it can be
shown that  satisfies equation 13 for some  if and only if,
for all , the equality

           (14)
holds for all  for some homogeneous polynomial  of
degree . (This function  is unrelated to the planogram )

C. Moment conditions on the projection data
To use the consistency conditions in practice, we first

define the - th moment of the (cosine-scaled) projection by 

            (15)
and we note that for any measured projection, the number 
is easy to compute (for any pair ). Note also from the def-
inition of  that (dropping the )

                                          (16)

Also, the function  is of the form

         (17)
Now, setting  and equating coefficients of

 in equations 16 and 17 leads to specific consistency con-
ditions in terms of . 

First, for , we immediately have , so
                    ( )

The sum of the (cosine-weighted) cone-beam projections is the
same for all projections.

For , we obtain  and  =
 so

             = 

 =        ( )
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Fig 2. Circular tomosynthesis geometry. (a) the source  lies on a circle
of radius 2 on the  plane. The center of the 3D Shepp Logan phantom is
in the  plane, and the detector is in the  plane. Detector
coordinates are . (b) One of the 36 simulated cone-beam projections.
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For  a similar analysis yields

    = 

 =      ( )

    = 

In summary
•  is a polynomial of degree  in 
•  is a polynomial of degree  in  (resp.  in )
• the coefficients for each  can be found by fitting polyno-

mials of degree  in  to each  with .
• for each , the coefficients of the polynomials in  

intertwine

D. Simulation results
We illustrate in fig. 3 the polynomials fit from the 36 sim-

ulated projections for the cases , , , , .
As expected for noise-free data, the fits are virtually perfect
(accurate to under 0.1%), and verify the consistency theory.

V. DISCUSSION AND CONCLUSIONS
We have derived new cone-beam consistency conditions

for sources lying on a plane. For consistent data the moments
of the projections must be polynomials in the source variables,
of the appropriate degree. Our simulations with ideal data were
in agreement with the theory.

The presented consistency conditions are necessary and
sufficient so in principle, other conditions can be derived from
them. However we have not yet linked our work mathemati-
cally to the conditions of John or Grangeat. 
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Fig 3. Projection moments, with polynomial fits. The horizontal axis is the
source position. The 36 calculated values for each moment are plotted with stars
(*) and the least-squares fitted polynomial is drawn with a solid line. The results
match the theory. Note that M10 and M01 have the same slope, as predicted. 
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